If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28596+400x-10x^2=0
a = -10; b = 400; c = +28596;
Δ = b2-4ac
Δ = 4002-4·(-10)·28596
Δ = 1303840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1303840}=\sqrt{16*81490}=\sqrt{16}*\sqrt{81490}=4\sqrt{81490}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(400)-4\sqrt{81490}}{2*-10}=\frac{-400-4\sqrt{81490}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(400)+4\sqrt{81490}}{2*-10}=\frac{-400+4\sqrt{81490}}{-20} $
| 7x+2=-3x+72 | | –9=–11+(b/8) | | 2x-1x+2x=24 | | 3x-3=6+2x | | 4-3x=-2x+7 | | 4-3x=3x+52 | | 2x-1x+1=75 | | y=3y-8 | | 2x-1x+1x=20 | | 96=3x5/4 | | 68=5x-12 | | 2000x-25x^2=11100 | | t-62/7=4 | | 5x-18=77 | | 3p-(-20)=95 | | x2+0.01x-0.001=0 | | E=3x6^2 | | 10(t-91)=90 | | 2x-1x+3x=365 | | 17-7x/8=2 | | 55=5(p-78) | | -5-3(10+h)=-6 | | 2x-1x+1x=12 | | V^2-3v-76=0 | | X-4-4x=6×+9-8× | | H(t)=t*2 | | 2x-1x+3x=8 | | 50=0.08x | | 2x-1x+1x=3 | | -2(g+5)=22 | | 3a^2-39a+9=0 | | v+56=5v |